DIÁRIO OFICIAL DA UNIÃO

Publicado em: 08/07/2021 | Edição: 127 | Seção: 1 | Página: 98 Órgão: Ministério da Economia/Instituto Nacional de Metrologia, Qualidade e Tecnologia

PORTARIA Nº 289, DE 5 DE JULHO DE 2021

Aprova o Regulamento Técnico Metrológico consolidado para pesos padrão.

O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA - INMETRO, no exercício da competência que lhe foi outorgada pelos artigos 4°, § 2°, da Lei n° 5.966, de 11 de dezembro de 1973, e 3°, incisos II e III, da Lei n° 9.933, de 20 de dezembro de 1999, combinado com o disposto nos artigos 18, inciso V, do Anexo I ao Decreto n° 6.275, de 28 de novembro de 2007, e 105, inciso V, do Anexo à Portaria n° 2, de 4 de janeiro de 2017, do então Ministério da Indústria, Comércio Exterior e Serviços, e item 4, alínea "a" da Resolução n° 8, de 22 de dezembro de 2016, do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro).

Considerando o que determina o Decreto nº 10.139, de 28 de novembro de 2019, que dispõe sobre a revisão e a consolidação dos atos normativos inferiores a decreto;

Considerando a Portaria Inmetro nº 233, de 22 de dezembro de 1994, que aprova o Regulamento Técnico Metrológico estabelecendo as condições que deverão ser observadas na fabricação e utilização de pesos padrão.

Considerando a Portaria Inmetro nº 32, de 19 de fevereiro de 1998, que altera a Portaria Inmetro nº 233, de 22 de dezembro de 1994, e o que consta no Processo SEI nº 0052600.003709/2021-34, resolve:

- Art. 1º Fica aprovado o Regulamento Técnico Metrológico consolidado que estabelece as condições mínimas que deverão ser observadas na fabricação e utilização de pesos padrão, fixado nos Anexos.
- § 1º O disposto neste regulamento se aplica aos pesos padrão de valores nominais compreendidos entre 1 mg e 50 kg das classes de exatidão E1; E2; F1; F2; M1; M2 e M3, utilizados:
- a) No controle metrológico legal de instrumentos de pesagem e pesos padrão de classe de exatidão inferior, conforme especificado em regulamentação apropriada a cada caso.
 - b) Com instrumentos de pesagem não automáticos de equilíbrio não automático.
- Art. 2º A infringência a quaisquer dispositivos deste regulamento, aprovado pela presente portaria, sujeitará os infratores às penalidades previstas no art. 8º da Lei nº 9.933, de 20 de dezembro de 1999.
 - Art. 3º Ficam revogadas, na data de vigência desta Portaria:
- I Portaria Inmetro nº 233, de 22 de dezembro de 1994 publicada no Diário Oficial da União em 2 de janeiro de 1995, seção 1, páginas 68 a 72; e
- II Portaria Inmetro nº 32, de 19 de fevereiro de 1998 publicada no Diário Oficial da União em 27 de fevereiro de 1998, seção 1, páginas 123 a 124.

Parágrafo único. Ficam convalidados os atos e as demais disposições com base no objeto do caput.

Art. 4° Esta Portaria entra em vigor em 2 de agosto de 2021, conforme o art. 4° do Decreto n° 10.139, de 2019.

MARCOS HELENO GUERSON DE OLIVEIRA JUNIOR

ANEXO

ANEXO A - REGULAMENTO TÉCNICO METROLÓGICO - RTM A QUE SE REFERE A PORTARIA Nº 289, DE 05 DE JULHO DE 2021.

1. TERMOS E DEFINIÇÕES

- 1.1 Para fins deste documento aplicam-se os termos constantes do Vocabulário Internacional de Termos de Metrologia Legal, aprovado pela Portaria Inmetro n° 150, de 29 de março de 2016, do Vocabulário Internacional de Metrologia Conceitos fundamentais e gerais e termos associados, aprovado pela Portaria Inmetro n° 232, de 8 de maio de 2012, ou suas substitutas, além dos demais termos apresentados a seguir.
- 1.1.1 Peso padrão ou Peso: Medida materializada de massa regulamentada em suas características de construção e metrológicas.
- 1.1.2 Coleção de pesos: Uma série de pesos, usualmente apresentada em uma caixa ou estojo de maneira a possibilitar qualquer pesagem de cargas compreendidas entre a massa do peso de maior valor nominal e a somas das massas de todos os pesos da série, com uma progressão na qual a massa do peso de menor valor nominal constitui o menor incremento da série.
 - 2. REQUISITOS METROLÓGICOS
 - 2.1 Unidade(s) de medida
- 2.1.1 As unidades de massa a serem utilizadas nos pesos são: o quilograma (kg), grama (g) e o miligrama (mg).
 - 2.2 Valores nominais
- 2.2.1 O valor nominal da massa dos pesos deve ser igual a 1×10 nkg; 2×10 nkg ou 5×10 nkg; onde "n" representa zero ou um número inteiro, positivo ou negativo.
- - 2.3 Pesos utilizados para verificação dos pesos de classe de exatidão inferior
- 2.3.1 E1 Pesos destinados a assegurar a rastreabilidade entre os padrões de massa nacionais e os pesos de classe inferior E2.
 - 2.3.2 E2 Pesos destinados à verificação inicial dos pesos da classe F1.
- 2.3.2.1 Os pesos ou conjuntos de pesos da classe E2 devem ser acompanhados de certificados de calibração, eles podem ser utilizados como pesos de classe E1 se satisfizerem as prescrições relativas à rugosidade e à susceptibilidade magnética para os pesos da classe E1 e se seu certificado de verificação menciona os dados apropriados (especificado em 5.2.1 a 5.2.4).
 - 2.3.3 F1 Pesos destinados à verificação inicial dos pesos de classe F2.
 - 2.3.4 F2- Pesos destinados à verificação inicial dos pesos de classe M1 e possivelmente M2.
 - 2.3.5 M1 Pesos destinados à verificação inicial dos pesos de classe M2.
 - 2.3.6 M2 Pesos destinados à verificação inicial dos pesos de classe M3.
 - 2.3.7 Classe de exatidão mínima dos pesos utilizados com os instrumentos de pesagem
- 2.3.7.1 F1; E2 Pesos destinados a serem utilizados com instrumentos de pesagem de classe de exatidão I.
- 2.3.7.2 F2 Pesos destinados a serem utilizados nas transações comerciais importantes (ex.: ouro e pedras preciosas), com instrumentos de pesagem de classe de exatidão II.
- 2.3.7.3 M1 Pesos destinados a serem utilizados com instrumentos de pesagem de classe de exatidão II.
- 2.3.7.4 M2 Pesos destinados às transações comerciais normais com os instrumentos de pesagem de classe de exatidão III.
- 2.3.7.5 M3 Pesos destinados a serem utilizados com os instrumentos de pesagem de classe de exatidão III e IIII.

- 2.4 Os erros máximos admissíveis, nas verificações iniciais e subsequentes, com relação a massa de cada peso individual, são os constantes da Tabela 1.
- 2.5 Os erros máximos admissíveis na supervisão metrológica é igual ao dobro dos erros máximos admissíveis nas verificações iniciais e verificações subsequentes.
- 2.6 Para cada peso individual, a incerteza global (U) para k= 2 (anexo) da massa convencional deve ser inferior ou igual a um terço do erro máximo permissível expresso na Tabela 1, exceto os pesos de classe E1; todavia, U deve ser significativamente inferior ao erro máximo permitido.
- 2.7 Para cada peso, o desvio entre o valor verdadeiro convencional, mc (determinado com incerteza global conforme 5.4) e o valor nominal do peso mo, não deve exceder o valor da diferença: erro máximo permitido, dm, menos a incerteza global.
 - Mo (dm U) < mc < mo + (dm U)
- 2.7.1 Para os pesos de classe E1 e E2, os quais são acompanhados de certificado especificando os dados apropriados (5.2.1 a 5.2.4) o desvio do valor nominal, |mc mo|, deve ser levado em consideração pelo usuário.

Tabela 1 - Erros máximos admissíveis (+dm em mg)

Valor nominal	Classe E1	Classe E2	Classe F1	Classe F2	Classe M1	Classe M2	Classe M3
50 kg	25	75	250	750	2500	7500	25000
20 kg	10	30	100	300	1000	3000	10000
10 kg	5	15	50	150	500	1500	5000
5 kg	2,5	7,5	25	75	250	750	2500
2 kg	1,0	3,0	10	30	100	300	1000
1 kg	0,5	1,5	5	15	50	150	500
500 g	0,25	0,75	2,5	7,5	25	75	250
200 g	0,10	0,30	1,0	3,0	10	30	100
100 g	0,05	0,15	0,5	1,5	5	15	50
50 g	0,030	0,10	0,30	1,0	3,0	10	30
20 g	0,025	0,080	0,25	0,8	2,5	8	25
10 g	0,020	0,060	0,20	0,6	2	6	20
5 g	0,015	0,050	0,15	0,5	1,5	5	15
2 g	0,012	0,040	0,12	0,4	1,2	4	12
1 g	0,010	0,030	0,10	0,3	1,0	3	10
500 mg	0,008	0,025	0,08	0,25	0,8	2,5	
200 mg	0,006	0,020	0,06	0,20	0,6	2,0	
100 mg	0,005	0,015	0,05	0,15	0,5	1,5	
50 mg	0,004	0,012	0,04	0,12	0,4		
20 mg	0,003	0,010	0,03	0,10	0,3		
10 mg	0,002	0,008	0,025	0,08	0,25		
5 mg	0,002	0,006	0,020	0,06	0,20		
2 mg	0,002	0,006	0,020	0,06	0,20		
1 mg	0,002	0,006	0,020	0,06	0,20		

3. REQUISITOS TÉCNICOS

- 3.1 Forma
- 3.1.1 Os pesos devem ter formato geométrico simples para facilitar sua manufatura.
- 3.1.2 A superfície externa deve estar isenta de defeitos de fabricação, rebarbas, porosidade, caroços ou outras falhas que sejam incompatíveis com a classe de exatidão ou processo de fabricação.
- 3.1.3 Os pesos de uma determinada série devem ter o mesmo formato, exceto para pesos de um grama ou menos.

Pesos de 1g ou menos.

- 3.1.4.1 Os pesos com menos de 1g devem ser de lâminas poligonais ou fios metálicos, com forma apropriada a permitir fácil manuseio, e que permitam distinguir facilmente seus diversos valores nominais. Os pesos de um grama podem ser de lâminas poligonais ou fios metálicos.
- 3.1.4.2 O formato dos pesos não marcados com seu valor nominal devem estar de acordo com a Tabela 2.

Tabela 2 - Formato dos pesos de 1g ou menos

Valor Nominal (mg)	Lâmina Poligonal	Fios
5; 50; e 500	Pentágono	Pentágono ou 5 segmentos
2; 20; e 200	Quadrado	Quadrado ou 2 segmentos
1; 10; 100; e 1000	Triângulo	Triângulo ou 1 segmento

- 3.1.4.3 Uma série de pesos pode ser composta de várias sequências de forma, diferindo entre si. Contudo entre uma série de sequência, uma sequência de pesos de forma diferente não pode ser inserida entre duas sequências de pesos da mesma forma.
 - 3.1.5 Pesos de valor nominal maior ou igual a um grama.
- 3.1.5.1 Os pesos de valor nominal de um grama podem ter a forma dos múltiplos ou dos submúltiplos dos pesos de valor nominal de um grama.
- 3.1.5.2 Os pesos de valor nominal de 1g à 50 kg podem ter as dimensões externas conforme indicado no anexo A, da Recomendação Internacional OIML R 111-1 Edição 2004.
- 3.1.5.3 Estes pesos podem ter corpo cilíndrico ou ligeiramente tronco-cônico. A altura do corpo deve ser aproximadamente igual ao diâmetro médio; a altura deve estar compreendida entre 3/4 e 5/4 do diâmetro.
- 3.1.5.4 Estes pesos podem ser providos com uma pega, a qual tem altura entre o diâmetro médio e o semi-diâmetro do corpo.
- 3.1.5.5 Em adição ao disposto em 3.1.5.2, pesos de 5 kg à 50 kg, podem ter formato conveniente à seu sistema de manuseio.
- 3.1.5.6 Podem dispor de dispositivo de preensão fundido com o peso, tais como eixo, pega ou dispositivos similares.
- 3.1.5.7 Os pesos de classe M1, M2 e M3 com valores nominais de 5 kg à 50 kg podem ter formado paralelepipédico retângulo com arestas arredondadas e pega rígida.
- 3.1.5.8 Dimensões e tolerâncias dimensionais admissíveis para pesos de classes M1, M2 e M3 são os constantes do Anexo A, a Recomendação Internacional OIML R 111-1 Edição 2004.
 - 3.2 Construção
 - 3.2.1 Pesos das classes E1 e E2.
- 3.2.1.1 Os pesos das classes E1 e E2 devem ser sólidos e isentos de cavidades abertas para a atmosfera, devendo ser de construção integral, isto é, de uma peça única de material.
 - 3.2.2 Pesos das classes F1 e F2.
- 3.2.2.1 Os pesos das classes F1 e F2 de 1 g à 50 kg podem ser construídos por uma ou mais peças do mesmo material, podendo ser dotados de câmara de ajuste, contudo o volume desta cavidade não deve exceder um quinto do volume total do peso devendo ser lacrada por um tampão ou outro dispositivo adequado.
 - 3.2.3 Pesos da classe M1.

Os pesos da classe M1 de 100 g à 50 kg devem ser dotados de câmara de ajuste. Para os pesos de 1 g à 50 g, a câmara de ajuste é opcional, contudo é recomendado que os pesos de 1 g à 10 g sejam manufaturados sem as respectivas câmaras.

3.2.3.1 Os pesos da classe M1 de 5 g à 50 kg com formato paralelepipédico retangular podem ser dotados de câmara de ajuste construída conforme 3.2.4.2 ou similar. A câmara de ajuste deve ser fechada por meio de um tampão rosqueado ou por meio de um disco de latão ou outro metal apropriado;

seu volume não deve ser maior do que um quinto do volume total do peso. O tampão rosqueado deve ter uma ranhura para a chave de fenda; e o disco, um orifício central para levantá-lo.

- 3.2.3.2 A selagem do tampão ou disco tem que se efetuar através de uma placa de chumbo que deve ser cravada num torneamento interno ou na rosca do tubo, terminando o mais rente possível da face do peso para que não haja saliência ou rebaixo, e quando da verificação inicial o ajuste dos pesos novos deve ser tal que, pelo menos dois terços da profundidade da câmara fique livre para futuros ajustes.
- 3.2.3.3 Os pesos da classe M1 de 100 g à 10 kg do tipo cilíndrico devem ter a câmara de ajuste construída conforme 3.2.4.7 a 3.2.4.10 ou similar rosqueado ou por meio de um disco de latão ou outro metal apropriado; após o ajuste inicial, aproximadamente dois terços do volume total da câmara de ajuste deve estar vazio. O tampão rosqueado ou disco deve ser selado por superposição de um disco de chumbo que ao ser comprimido se fixará à ranhura da parte superior da cavidade de ajuste.
 - 3.2.4 Pesos das classes M2 e M3.
- 3.2.4.1 Os pesos das classes M2 e M3 de 100 g à 50 kg devem ter câmara de ajuste. Para os pesos da classe M2 de 20 g à 50 g, a câmara de ajuste é opcional. Os pesos da classe M2 de 10 g ou menos devem ser sólidos, sem câmara de ajuste.
- 3.2.4.2 Os pesos das classes M2 e M3 de 5 kg à 50 kg com formato paralelepipédico retangular com pega de tubo oco, a câmara de ajuste deve ser constituída pelo interior do tubo; se a pega for sólida a câmara de ajuste deve ser fundida ou usinada em um dos lados com uma abertura sobre a superfície superior deste lado.
- 3.2.4.3 Quando da verificação inicial o ajuste dos pesos deve ser tal que, pelo menos dois terços da profundidade da câmara permaneça livre para futuros ajustes.
- 3.2.4.4 Quando a câmara de ajuste for o interior da pega do tubo oco esta deve ser fechada por meio de um tampão rosqueado ou disco de latão ou outro material apropriado. O tampão deve ter uma ranhura para a chave de fenda; e o disco um orifício central para levantá-lo.
- 3.2.4.5 A selagem do tampão ou disco deve ser efetuada por meio de uma placa de chumbo que deve ser cravada num torneamento interno ou na rosca do tubo.
- 3.2.4.6 O fechamento da câmara de ajuste usinada ou fundida deve ser feito com uma placa de aço não temperada ou outro material apropriado. A selagem será feita por uma placa de chumbo, sobre a placa de aço que, ao ser comprimida ficará presa à ranhura superior da câmara.
- 3.2.4.7 Os pesos cilíndricos das classes M2 e M3 de 100 g à 10 kg devem ter a câmara de ajuste, perfurada ou já fundida, aberta na parte superior, no eixo do peso. Aberta na parte superior da pega e comportando um alargamento do diâmetro na entrada.
- 3.2.4.8 Quando da verificação inicial o ajuste dos pesos deve ser tal que, pelo menos dois terços da profundidade da câmara permaneça livre para futuras ajustes.
- 3.2.4.9 A câmara de ajuste deve ser fechada com um tampão rosqueado ou um disco de latão ou outro metal apropriado. O tampão rosqueado deve possuir uma ranhura para introduzir uma chave de fenda e o disco deve possuir um orifício central para sua eventual retirada.
- 3.2.4.10 O tampão rosqueado ou disco devem ser selados por superposição de um disco de chumbo que ao ser comprimido se fixará à ranhura da parte superior da cavidade de ajuste.
 - 3.3 Material
- 3.3.1 Os pesos devem ser resistentes à corrosão. A qualidade do material deve ser tal que a alteração da massa dos pesos deve ser desprezível em relação aos erros máximos admissíveis para sua classe de exatidão, sob condições normais de uso em razão de sua finalidade.
 - 3.3.2 Pesos das classes E1 e E2.
- 3.3.2.1 Os metais ou ligas metálicas dos pesos das classes E1 e E2, devem ser, praticamente, amagnético (a susceptibilidade magnética não deve exceder a, x=0,01 para a classe E1 e x=0,03, para a classe E2).
- 3.3.2.2 A dureza destes materiais e suas resistências ao uso devem ser similar ou melhor do que a do aço inoxidável austenítico.

- 3.3.3 Pesos das classes F1 e F2.
- 3.3.3.1 A dureza e a consistência dos materiais utilizados para os pesos de classes F1 e F2 devem ser, no mínimo, equivalentes ao do latão.
- 3.3.3.2 O metal ou liga dos pesos das classes F1 e F2 deve ser praticamente amagnético. A susceptibilidade magnética não deve exceder a c = 0,05.
 - 3.3.4 Pesos da classe M1.
- 3.3.4.1 O material utilizado para os pesos retangulares da classe M1, de 5 kg à 50kg devem ter resistência à corrosão que seja ao menos, igual a do ferro fundido cinzento; sua fragilidade não deve exceder àquela do ferro fundido cinzento.
- 3.3.4.2 Os pesos cilíndricos da classe M1 de 10 kg ou menos devem ser de latão ou de outro material cuja qualidade seja similar ou melhor do que a do latão.
- 3.3.4.3 Os pesos da classe M1 de 1 g ou menos devem ser feitos de material suficientemente resistente à corrosão e à oxidação. A superfície não deve ser coberta, exceto para os pesos de 1 g com formato cilíndrico para a qual é permitido tratamento de superfície.
 - 3.3.5 Pesos das classes M2 e M3.
- 3.3.5.1 O corpo dos pesos retangulares das classes M2 e M3 de 5 kg à 50 kg devem ser de ferro fundido cinzento ou outro material cuja qualidade seja similar ou melhor do que a do ferro fundido cinzento.
- 3.3.5.2 Os pesos cilíndricos das classes M2 e M3 de 10 kg ou abaixo devem ser feitos de material cuja dureza e resistência à corrosão sejam, ao menos igual a do latão fundido e a fragilidade não exceda a do ferro fundido cinzento, contudo, o ferro fundido cinzento não deve ser usado para pesos com valores nominais inferiores a 100 g.
 - 3.3.6 Pesos das classes M1, M2 e M3.
- 3.3.6.1 Os pesos das classes M1, M2 e M3 devem ser, praticamente, amagnéticos. As pegas dos pesos retangulares devem ser feitas em tubos de aço sem costura ou fundidos integralmente no corpo do peso.
 - 3.4 Massa específica
- 3.4.1 A massa específica do material constitutivo do peso deve ser tal que um desvio de 10% na massa específica do ar (1,2 kg/m3) provoque, no máximo, um erro de 1/4 do erro máximo permitido. Estes limites estão especificados na Tabela 3.

Tabela 3 - Limites superiores e inferiores para a massa específica (rmin,rmax) 103kg.m-3

Valor nominal	Classe E1	Classe E2	Classe F1	Classe F2	Classe M1	Classe M2
≥ 100 g	7,934 8,067	7,81 8,21	7,39 8,73	6,4 10,7	≥ 4,4	<u>></u> 2,3
50 g	7,92 8,08	7,74 8,28	7,27 8,89	6,0 12,0	<u>≥</u> 4,0	
20 g	7,84 8,17	7,50 8,57	6,6 10,1	4,8 24,0	<u>></u> 2,6	
10 g	7,74 8,28	7,27 8,89	6,0 12,0	<u>≥</u> 4,0	<u>></u> 2,0	
5 g	7,62 8,42	6,9 9,6	5,3 16,0	<u>></u> 3,0		
2 g	7,27 8,89	6,0 12,0	<u>></u> 4,0	<u>></u> 2,0		
1 g	6,9 9,6	5,3 16,0	≥ 3,0			
500 mg	6,3 10,9	<u>></u> 4,4	<u>></u> 2,2			
200 mg	5,3 16,0	<u>></u> 3,0				
100 mg	≥ 4,4	<u>></u> 2,3				
50 mg	≥ 3,4					
20 mg	<u>></u> 2,3					

- 3.5 Condições das superfícies
- 3.5.1 Sob as condições normais de utilização, a qualidade das superfícies deve ser tal que a alteração da massa dos pesos seja desprezível com relação ao erro máximo admissível.

- 3.5.2 As superfícies dos pesos (incluindo a base e arestas) quando visualmente examinadas devem estar isentas de asperezas e as arestas devem ser arredondadas. As superfícies dos pesos das classes E1, E2, F1 e F2 devem ser polidas e estar isentas: de defeitos de fabricação, rebarbas, porosidade, caroços ou outras falhas que sejam incompatíveis com a classe de exatidão ou processo de f
- 3.5.3 As superfícies dos pesos cilíndricos das classes M1, M2 e M3 de 1 g à 10 kg devem estar isentas de asperezas e porosidades quando visualmente examinadas. O acabamento dos pesos retangulares das classes M1, M2 e M3 de 5 kg, 10 kg, 20 kg e 50 kg deve ser similar ao ferro fundido cinzento cuidadosamente moldado em areia fina. Este resultado pode ser obtido por pintura adequada.
- 3.5.4 No caso de dúvida acerca da qualidade superficial de um peso, de um grama ou mais, os valores máximos (Tabela 4) de rugosidade superficial, altura média pico para vale, Rz devem ser determinados para estabelecer a qualidade das superfícies dos pesos.

Tabela 4 - Rugosidades toleradas para as superfícies dos pesos

CLASSE	E1	E2	F1	F2
Rz (mm)	0,5	1	2	5

- 3.6 Ajustes
- 3.6.1 Pesos das classes E1 e E2.
- 3.6.1.1 Os pesos devem ser ajustados por abrasão, ou qualquer outro método apropriado, as exigências de superfície devem ser satisfeitas ao final do processo.
 - 3.6.2 Pesos das classes F1 e F2.
- 3.6.2.1 Os pesos inteiriços das classes F1 e F2 devem ser ajustados por abrasão, ou qualquer outro método apropriado, que não altere a superfície. Pesos com cavidades de ajustagem devem ser ajustados com o mesmo material constitutivo do peso ou com estanho, molibdênio ou tungstênio.
 - 3.6.3 Pesos das classes M1, M2 e M3.
- 3.6.3.1 Os pesos de 100 g à 50 kg devem ser ajustados com esferas de chumbo ou outros materiais metálicos densos.
- 3.6.3.2 Os pesos cilíndricos de 1 g à 50 kg sem cavidades devem ser ajustados por remoção de material ou outro método apropriado. Se estes pesos tiverem cavidades de ajustagem, devem ser ajustados com esferas de chumbo ou outro material metálico denso.
- 3.6.3.3 Os pesos de lâminas ou fios de 1 mg a 1 g devem ser ajustados por corte, abrasão ou outro método apropriado.
- 3.6.3.4 O material utilizado para ajustagem deve ser sólido, e manter sua massa e constituição; não deve variar (química ou eletroliticamente) a massa e constituição do peso em que esteja incorporada.
 - 4. MARCAÇÃO
- 4.1 Com exceção dos pesos de classes E1 e E2, os pesos de um grama e seus múltiplos devem indicar de modo claro e indelével seu valor nominal. Os números indicativos dos valores nominais dos pesos devem representar:
 - a) Quilogramas- para massas maiores ou igual a 1 kg;
 - b) Gramas- para massa de 1 g até 500 g.
- 4.1.1 Os exemplares de pesos em duplicatas ou triplicatas, em uma série, devem ser claramente distinguidos por um ou dois asteriscos ou pontos no centro da superfície, exceto para pesos em fios que devem ser distinguidos por um ou dois ou colchetes.
- 4.1.2 Os pesos em lâminas ou fios de 1 mg à 1 g não portam indicações do valor nominal ou classe de referência.
 - 4.2 Pesos das classes E1 e E2

- 4.2.1 Os pesos das classes E1 e E2 não portam indicações dos valores nominais ou classe de referências; a classe deve ser indicada na cobertura do estojo dos pesos (de acordo com 4.5.1). A classe deve ser indicada como E1, E2. Os pesos da classe E2 podem portar um ponto fora do centro da superfície superior para diferenciar dos pesos de classe E1.
 - 4.3 Pesos das classes F1 e F2.
- 4.3.1 Os pesos de 1 kg à 50 kg devem portar por polimento ou gravação a indicação dos valores nominais expressos de acordo com o disposto em 4.1 (não seguido do símbolo ou nome da unidade de medida).
 - 4.3.2 Os pesos da classe F1 não devem portar a indicação da classe de exatidão.
- 4.3.3 Os pesos da classe F2 de 1 g à 50 kg devem portar a indicação da classe de exatidão sob a forma "F" acompanhada da indicação de seu valor nominal.
 - 4.4 Pesos das classes M1, M2 e M3.
- 4.4.1 Os pesos retangulares de 5 kg à 50 kg devem indicar os valores nominais seguidos do símbolo "kg", gravados na superfície superior do corpo ou na pega, em alto ou baixo relevo.
- 4.4.2 Os pesos cilíndricos de 1 g à 10 kg devem indicar os valores nominais seguidos do símbolo "g" ou "kg" gravados, na superfície superior do corpo ou na pega, em alto ou baixo relevo. A indicação pode ser reproduzida na superfície cilíndrica do corpo dos pesos de 500 g à 10 kg.
- 4.4.3 Os pesos da classe M1, devem portar o símbolo M1 ou M, em alto ou baixo relevo, junto com a indicação do valor nominal.
- 4.4.4 Os pesos da classe M2, devem portar junto com a indicação do valor nominal, o símbolo M2, em alto ou baixo relevo, ou nenhuma indicação de classe.
- 4.4.5 Os pesos da classe M3 devem portar o símbolo M3 ou X, em alto ou baixo relevo, junto com a indicação do valor nominal.
- 4.4.6 Os pesos das classes M2 e M3 (exceto os pesos de fios) podem portar a marca do fabricante, em tal caso, deve ser indicado em alto ou baixo relevo na parte central da superfície superior dos pesos retangulares, na face superior da pega dos pesos cilíndricos ou na face superior dos pesos cilíndricos da classe M3, munidos de pega.
 - 4.5 Apresentação
- 4.5.1 Exceto para os pesos das classes M2 e M3, os pesos devem ser apresentados de acordo com as seguintes exigências:
- a) A tampa dos estojos que contém os pesos devem indicar suas respectivas classes na forma: E1, E2, F1, F2 e M1;
 - b) Os pesos de uma mesma série devem apresentar a mesma classe de exatidão.
 - 4.5.2 Pesos das classes E1, E2, F1 e F2.
- 4.5.2.1 Os pesos, individualmente ou em conjunto devem ser protegidos contra deterioração ou danos devido a choques ou vibrações. Devem estar acondicionados em cavidades individuais nos estojos de madeira, plástico ou outro material adequado.
 - 4.5.3 Pesos das classes M1.
- 4.5.3.1 Os pesos da classe M1 cilíndricos de valores nominais superiores ou iguais a 500 g, (individuais ou em série) devem estar acondicionados em estojos com cavidades individuais.
- 4.5.3.2 Os pesos em lâminas ou fios devem estar acondicionados em estojos com cavidades individuais. A classe de referência (M1) deve ser indicada na tampa do estojo.
 - 4.6 Marca de verificação
- 4.6.1 Pode ser dispensada a marca de verificação para os pesos acompanhados de certificados de calibração.
 - 4.6.2 Pesos das classes E1 e E2
 - 4.6.2.1 A marca de verificação pode ser afixada no estojo dos pesos das classes E1 e E2.

- 4.6.2.2 Com relação a cada peso ou conjunto de pesos das classes E1 e E2 o certificado deve ser expedido pelo INMETRO.
 - 4.6.3 Pesos da classe F1.
- 4.6.3.1 Os pesos da classe F1, quando submetidos ao controle metrológico legal, as marcas de controle devem ser afixadas no estojo que contém os respectivos pesos.
 - 4.6.4 Pesos das classes F2, M1, M2 e M3.
- 4.6.4.1 Os pesos retangulares da classe M1 ou cilíndricos da classe M1 ou F2, quando submetidos a controle metrológico legal, as marcas apropriadas de controle devem ser afixadas no selo da câmara de ajuste; para os pesos desprovidos de câmara de ajuste, as marcas de controle devem ser afixadas na base.
- 4.6.4.2 Os pesos em lâminas ou fios da classe M1, quando submetidos a controle metrológico legal as marcas do controle devem ser afixadas no estojo.
- 4.6.4.3 As marcas do controle dos pesos das classes M2 e M3 devem ser afixadas na placa de chumbo que sela a câmara de ajustagem; para os pesos das classes M2 e M3 desprovidos de câmara de ajustagem, as marcas de controle devem ser afixadas na base.
 - 5. CONTROLE METROLÓGICO LEGAL
 - 5.1 Aprovação de Modelo
- 5.1.1 Para aprovação do modelo deve ser apresentado ao INMETRO, além da documentação exigida um protótipo de cada valor nominal, devidamente acondicionados conforme estabelece este Regulamento. Caso necessário outros protótipos poderão ser exigidos, para análise complementar.
- 5.1.2 Nenhum peso pode ser comercializado ou exposto a venda, sem corresponder a modelo aprovado, bem como sem ter sido aprovado em verificação inicial.
- 5.1.3 Só serão aceitos para avaliação de modelo, pesos das classes de exatidão de que trata o presente Regulamento.
- 5.1.4 O requerente da aprovação de modelo deve colocar a disposição do INMETRO, meios adequados para realização dos ensaios, caso estes sejam feitos nas instalações do requerente ou instalações indicadas por ele.
- 5.1.5 O requerente da aprovação de modelo deve apresentar ao INMETRO, modelo de pesos destinados à produção a fim de que seja verificada a conformidade do modelo, de acordo com as prescrições legais.
 - 5.1.6 O modelo aprovado não pode ser modificado sem autorização prévia do INMETRO.
 - 5.2 Verificação Inicial
 - 5.2.1 Calibração ou verificação inicial
- 5.2.1.1 Os pesos novos de certas categorias podem ser calibrados individualmente ou submetidos à verificação inicial, em função de seu uso pretendido e da legislação em vigor.
- 5.2.1.2 Os pesos calibrados devem ser acompanhados de um certificado mencionando, pelo menos, a massa convencional de cada peso, a incerteza global associada e o valor do fator de cobertura k.
 - 5.2.2 Os pesos das classes E1 e E2 devem ser acompanhados de certificado.
- 5.2.3 Os certificados dos pesos da classe E1 devem mencionar, pelo menos, os valores da massa convencional, a incerteza global e o fator de cobertura k, e a massa específica ou volume de cada peso.
- 5.2.4 Os certificados dos pesos da classe E2 devem mencionar, pelo menos, os valores da massa convencional de cada peso, a incerteza global e o fator de cobertura k, ou as informações exigidas para os certificados dos pesos da classe E1, conforme condições especificadas em 5.1, para pesos da classe E2.
 - 5.3 Verificação Subsequente
- 5.3.1 Os pesos que estão sujeitos à verificação inicial ou calibração devem ser submetidos à recalibração ou verificação periódica a fim de verificar se suas qualidades metrológicas estão sendo mantidas.

- 5.3.2 A verificação periódica tem validade de dois anos a contar da data da última verificação.
- 6. DISPOSIÇÕES GERAIS
- 6.1 Os pesos de precisão que obedecem as regulamentações de fabricação válidas até a entrada em vigor desta Portaria só podem ser submetidos a verificação inicial até 31 de dezembro de 1997, se estiverem marcados com um asterisco ou com a letra "P".
- 6.2 Os pesos de precisão que obedecem as regulamentações de fabricação válidas até a entrada em vigor desta Portaria só podem ser submetidos as verificações subsequentes até 31 de dezembro de 2009 se observarem os erros máximos admissíveis para as classes M1 ou M2 estabelecidos no Regulamento ora aprovado.

ANEXO B - INCERTEZAS DO PADRÃO

1. OBSERVAÇÕES PRELIMINARES

As prescrições e o disposto neste anexo não são compulsórias, devem ser consideradas como guia. Somente os quatro enunciados gerais abaixo são de caráter obrigatório.

- I O valor da incerteza global, U, deve incluir todos os componentes das incertezas provenientes dos padrões utilizados, do processo de pesagem e do empuxo do ar.
- II O estabelecimento do valor da incerteza deve estar fundamentado numa relação completa dos componentes considerados, especificando para cada componente o método utilizado.
- III Para os componentes da incerteza que são avaliados por métodos estatísticos, a relação entre a incerteza citada e o desvio padrão (valor s da média) deve ser mencionada (pode ser utilizada o fator t de Student).
- IV O método para combinar os diferentes componentes da incerteza mencionada em I deve ser especificado e deve ser baseado em Recomendação Internacional apropriada ou em Norma Internacional reconhecida.
 - 1.1 Incerteza de Medição
- 1.1.1 Estimativa caracterizando a faixa de valores na qual se encontra o valor verdadeiro da grandeza medida. A incerteza de medição compreende, em geral, vários componentes, os quais poderão ser agrupados em duas categorias (A e B), segundo o método utilizado para determinar os valores numéricos:
 - a) Componentes avaliados por métodos estatísticos para série de determinações repetidas;
 - b) Componentes avaliados por outros métodos.
 - 1.2 Incerteza Padrão
 - 1.2.1 Incerteza do resultado de uma medição, expressa como um desvio padrão estimado.
 - 1.3 Incerteza Padrão Combinada (uc)

Incerteza do resultado de uma medição, quando esse resultado é obtido a partir dos valores de diferentes grandezas. É igual a raiz quadrada da soma apropriada das variâncias e covariâncias dessas grandezas. A variância de uma quantidade é igual ao quadrado do seu desvio padrão.

1.4 Incerteza Global (U)

A incerteza global é obtida multiplicando a incerteza padrão combinada pelo fator de correção k. U = kuc

- 1.5 Fator de Correção k Nível de Confiança
- 1.5.1 Na maioria dos casos é apropriado usar o valor k=2. Para uma distribuição normal, o fator k=2 significa que os limites de incerteza global apresentam um nível de confiança aproximadamente igual a 95%.

2. INCERTEZA PARA OS PESOS

uc2 = uA2 + uB2

Sendo uA e uB as incertezas padrões das categorias A e B respectivamente.

Incerteza no Processo de Pesagem (Categoria A)

Peso das Classes F2 e inferiores

A incerteza padrão, uw, pressupondo uma distribuição estatística retangular dos valores determinados, é dada por:

$$u_w = \frac{a_w}{\sqrt{3}}$$

Onde aw é uma estimativa de variação máxima igual ao maior dos valores seguintes:

- a) a metade da faixa de variação observada; ou
- b) o intervalo da balança utilizada.
- 2.1.2 Peso das Classes E1, E2 e F1.

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

Onde x é a média dos resultados das massas xk

$$s^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{k} - \overline{x})^{2}$$

Onde s é o desvio padrão de

$$u_A = \frac{s}{\sqrt{n}}$$

Se o número de dados "n" for menor que 10, uA deve ser multiplicado pelo fator tr, dado na tabela abaixo:

n	tr
2	7,0
3	2,3
4	1,7
5	1,4
6	1,3
7	1,3
n	tr
8	1,2
9	1,2

O fator tr aplicado para k=2 é proveniente da distribuição normal de Student.

Se séries idênticas de medições forem efetuadas em dias diferentes ou em circunstâncias diferentes, e se as séries diferirem entre si por desvios superiores à incerteza de uma série única, uma incerteza padrão uA deve ser calculada pela substituição de xk nas equações 1 e 2 pela média das séries de medidas e "n" pelo respectivo número das séries medidas. Se u"A for incerteza padrão de uma série única de medidas, uA é obtida por:

2.2 Outras Incertezas (Categoria B)

A incerteza da categoria B, uB é geralmente composta pelas incertezas uN (peso de referência), ub (empuxo do ar) e us (sensibilidade da balança) :

$$u_B^2 = u_N^2 + u_b^2 + u_S^2$$

2.2.1 Incerteza dos Padrões (Categoria B)

A incerteza padrão (un), associada a massa do peso de referência pode ser calculada a partir do certificado de calibração dividindo a incerteza global U pelo fator de correção k.

Nos casos em que a incerteza global associada à massa do peso de referência, seja desconhecida, deve ser adotada uma incerteza levando em conta a classe de exatidão do peso de referência conforme especificado em 2.6.

2.2.2 Combinações de Peso de Referência

Se forem utilizadas combinações de pesos de referência, as covariâncias devem ser levadas em consideração, contudo, na maioria dos casos, as covariâncias são desconhecidas, porque, geralmente, elas não constam dos certificados. Neste caso, como as covariâncias dos pesos de uma mesma série são em geral grandes, a incerteza padrão combinada uN é neste caso a maior estimativa para a incerteza padrão combinada (coeficiente de correlação considerado:1).

$$u_N = \sum u_{Ni}$$

2.2.3 Empuxo do Ar

A correção do empuxo do ar é desnecessária pois ub, pode ser considerado desprezível sob as seguintes condições:

$$|C| \le \frac{1}{3} \cdot \frac{u}{m_0} \quad com \quad C = \frac{(\rho_r - \rho_t)(\rho_a - \rho_o)}{\rho_r \cdot \rho_t}$$

p0 = 1,2 kg.m-3

pa = massa específica do ar

pr = massa específica do peso de referência

pt = massa específica do peso ensaiado

m0 = valor nominal do peso

Em todos os outros casos a correção do empuxo do ar deve ser aplicada multiplicando mo (massa do peso de referência) pelo fator (1 +C). Quando a massa específica do ar (pa) durante a pesagem do peso ensaiado for igual a massa específica do ar durante a pesagem do peso de referência (mr), ub é, então calculado a partir das incertezas padrão (considerando o fator k) da massa específica do ar (upa), da massa específica do material do peso de referência (upr) da massa específica do material do peso em teste upt, como segue:

$$u_{b}^{2} = \left[m_{r} \frac{\rho_{r} - \rho_{t}}{\rho_{r} \cdot \rho_{t}} u_{p_{a}} \right]^{2} + \left[m_{r} (\rho_{a} - \rho_{o}) \right]^{2} \left[\frac{u_{\rho_{r}}^{2}}{\rho_{r}^{4}} + \frac{u_{\rho_{t}}^{2}}{\rho_{t}^{4}} \right]$$

2.2.4 Sensibilidade da Balança

A incerteza padrão (us) associada à sensibilidade da balança deve ser estimada a partir dos procedimentos da calibração levando em consideração a diferença de indicação ou deflexão entre o peso de referência e o peso ensaiado.

Este conteúdo não substitui o publicado na versão certificada.